Highlighted publications

This paper reports the process and outcome of a unique project to develop a whole-school physical activity framework. The project was superbly led by Dr Andy Daly-Smith and his team at Leeds Beckett University and involved a two-day stakeholder event that resulted in the development of the Creating Active Schools (CAS) Framework. The paper describes the unique development process and the resultant CAS Framework.

This systematic review and meta-analysis is the first PhD study of Ashley Cox. Ashley’s project is focused on developing muscular fitness outcomes in adolescent boys through the physical education curriculum. The analysis was based on data from 11 studies and concluded that school-based muscular fitness interventions in boys had small to medium effects.

This study applied the Mx metric to look at its utility as an accelerometer outcome that does not rely on cutpoints but which relates to health outcomes in children. We used the school day as the context and focused on the M30 metric (i.e., the minimum acceleration for the most active accumulated 30 minutes of the school day). The Mx metrics were first introduced in an earlier paper led by Alex Rowlands and have subsequently been developed to demonstrate their use as translational metrics with data visualisations.

This study examines the accelerometer metrics of average acceleration and intensity gradient  in children, that were introduced in 2018 by Alex Rowlands (see MSSE paper here). We found that intensity gradient was associated with indicators of obesity, fitness, and metabolic health, independent of average acceleration. 

This paper describes the calibration of Youth Activity Profile (YAP) MVPA and sedentary behaviour algorithms for English primary and secondary school students, as well as their subsequent cross-validation with an independent sample. We found that predicted estimates of MVPA and SB from the algorithms were very promising but equivalency analyses concluded that agreement with device-based estimates needed improvement. The paper is open access and can be accessed by clicking the title above.

This paper is part of Liezel Hurter’s excellent PhD project which is expertly supervised by LJMU Physical Activity Exchange colleagues. The paper provides long overdue GENEActiv and ActiGraph raw accelerometer ENMO thresholds for sedentary (and stationary) behaviour for primary school children. The thresholds are included here but read the paper for the full details (it’s open access  – click the title above to read on).

In 2014 Alex Rowlands (University of Leicester) and colleagues introduced the Sedentary Sphere for classifying time in sedentary behaviour in adults using the orientation of the GENEActiv accelerometer on the wrist. This 2019 paper from Liezel validates the Sedentary Sphere method in children wearing GENEActiv and ActiGraph accelerometers on the wrist. Click the title above to go to the article on the Journal of Sports Sciences site (paywalled).

This paper is a collaborative effort between Edge Hill, LJMU, and Iowa State University as part of the Youth Activity Profile project. The project focuses primary on calibration and validation of the Youth Activity Profile self-report instrument, but in this article we focused specifically on sedentary behaviours and their associations with field-based measures of adiposity in youth. We report age and sex-related differences in prevalence of different types of sedentary screen behaviours, and their associations with adiposity. Click the title above to go to the article site (paywalled).

This article is part of former Edge Hill PhD student, George Sanders’ project which focused on physical activity and sedentary behaviour in older adults. This is the first study to generate GENEActiv (wrist) and ActiGraph (hip) raw acceleration ENMO thresholds for sedentary time and MVPA in adults aged 65 years +. The cutpoints are detailed in the figure below the abstract. To go to the article web page, click the title above (paywalled).

The two Figures show predicted health outcome response surfaces for school day activity compositions. Panel a displays predicted BMI-z score (a measure of body size) and Panel d displays predicted peak oxygen uptake (a measure of cardiorespiratory fitness) at the mean composition of sedentary time, light physical activity, and moderate-to-vigorous physical activity during the school day.

After adjustment for covariates and baseline values of the outcomes, the AS:Sk pilot intervention showed significant effects on sedentary time during the school day. There were no effects on physical activity, fitness, and body size.